Skip to main content
Glama

Chicken Business Management MCP Server

by PSYGER02
aiTrainingService.ts12.7 kB
import { chickenMemoryService } from './chickenMemoryService.js'; import { chickenBusinessAI } from './chickenBusinessAI.js'; import { unifiedAIService } from './unifiedAIService.js'; export interface TrainingData { id: string; type: 'conversation' | 'workflow' | 'pattern' | 'feedback'; input: string; expectedOutput: string; actualOutput?: string; role: string; context: any; quality: number; // 0-1 score timestamp: Date; } export interface TrainingSession { id: string; name: string; description: string; dataPoints: TrainingData[]; status: 'preparing' | 'training' | 'completed' | 'failed'; metrics: TrainingMetrics; createdAt: Date; completedAt?: Date; } export interface TrainingMetrics { totalSamples: number; qualityScore: number; improvementAreas: string[]; performanceByRole: Record<string, number>; patterns: any[]; } export class AITrainingService { private trainingSessions: Map<string, TrainingSession> = new Map(); private trainingData: TrainingData[] = []; /** * Collect training data from user interactions */ async collectInteractionData( userId: string, userInput: string, aiResponse: string, role: string, context: any, userFeedback?: number ): Promise<void> { const trainingPoint: TrainingData = { id: crypto.randomUUID(), type: 'conversation', input: userInput, expectedOutput: aiResponse, // Will be refined based on feedback actualOutput: aiResponse, role, context, quality: userFeedback || 0.8, // Default assumption timestamp: new Date() }; this.trainingData.push(trainingPoint); // Store in persistent memory await chickenMemoryService.addObservation( `training_data_${userId}`, trainingPoint ); // Analyze for immediate improvements await this.analyzeAndImprove(trainingPoint); } /** * Create a new training session */ async createTrainingSession( name: string, description: string, dataFilter?: any ): Promise<string> { const sessionId = crypto.randomUUID(); // Filter training data based on criteria let filteredData = this.trainingData; if (dataFilter) { filteredData = this.filterTrainingData(dataFilter); } const session: TrainingSession = { id: sessionId, name, description, dataPoints: filteredData, status: 'preparing', metrics: await this.calculateMetrics(filteredData), createdAt: new Date() }; this.trainingSessions.set(sessionId, session); // Start training process this.startTraining(sessionId); return sessionId; } /** * Analyze workflow patterns for optimization */ async analyzeWorkflowPatterns(): Promise<any[]> { // Get all workflow-related interactions const workflowData = this.trainingData.filter( data => data.type === 'workflow' || data.context?.currentWorkflow ); const patterns = []; // Group by workflow type const workflowGroups = this.groupBy(workflowData, 'context.currentWorkflow'); for (const [workflow, data] of Object.entries(workflowGroups)) { const pattern = await this.analyzeWorkflowGroup(workflow, data as TrainingData[]); patterns.push(pattern); } // Store patterns for future use await chickenMemoryService.storeEntity('workflow_patterns', patterns); return patterns; } /** * Fine-tune AI responses based on role performance */ async optimizeRoleResponses(role: string): Promise<any> { const roleData = this.trainingData.filter(data => data.role === role); if (roleData.length < 10) { return { error: 'Insufficient data for role optimization' }; } // Analyze common patterns and issues const commonInputs = this.findCommonPatterns(roleData.map(d => d.input)); const lowQualityResponses = roleData.filter(d => d.quality < 0.6); // Generate optimization suggestions const optimizations = { role, commonQueries: commonInputs, problemAreas: lowQualityResponses.map(d => ({ input: d.input, issue: d.actualOutput, suggestion: await this.generateImprovedResponse(d) })), recommendedPromptChanges: await this.suggestPromptImprovements(role, roleData), trainingDataQuality: this.calculateDataQuality(roleData) }; return optimizations; } /** * Learn patterns from website interactions */ async learnWebsitePatterns(interactionLogs: any[]): Promise<any> { const patterns = { commonUserFlows: [], dropOffPoints: [], efficientPaths: [], roleBasedBehaviors: {} }; // Analyze user flows const userFlows = this.extractUserFlows(interactionLogs); patterns.commonUserFlows = this.findMostCommonFlows(userFlows); // Find drop-off points patterns.dropOffPoints = this.identifyDropOffPoints(userFlows); // Identify efficient paths patterns.efficientPaths = this.findEfficientPaths(userFlows); // Role-based behavior analysis const roleGroups = this.groupBy(interactionLogs, 'role'); for (const [role, logs] of Object.entries(roleGroups)) { patterns.roleBasedBehaviors[role] = this.analyzeRoleBehavior(logs as any[]); } // Store patterns await chickenMemoryService.storeEntity('website_patterns', patterns); // Generate workflow optimizations const optimizations = await this.generateWorkflowOptimizations(patterns); return { patterns, optimizations }; } /** * Generate training insights and recommendations */ async generateTrainingInsights(): Promise<any> { const insights = { overallPerformance: await this.calculateOverallPerformance(), rolePerformance: await this.calculateRolePerformance(), improvementAreas: await this.identifyImprovementAreas(), trainingRecommendations: await this.generateTrainingRecommendations(), patternAnalysis: await this.analyzeInteractionPatterns() }; return insights; } /** * Private helper methods */ private async startTraining(sessionId: string): Promise<void> { const session = this.trainingSessions.get(sessionId); if (!session) return; try { session.status = 'training'; // Process training data await this.processTrainingData(session.dataPoints); // Update AI models with new patterns await this.updateAIModels(session); session.status = 'completed'; session.completedAt = new Date(); } catch (error) { console.error('Training failed:', error); session.status = 'failed'; } } private async calculateMetrics(data: TrainingData[]): Promise<TrainingMetrics> { const metrics: TrainingMetrics = { totalSamples: data.length, qualityScore: data.reduce((sum, d) => sum + d.quality, 0) / data.length, improvementAreas: [], performanceByRole: {}, patterns: [] }; // Calculate performance by role const roleGroups = this.groupBy(data, 'role'); for (const [role, roleData] of Object.entries(roleGroups)) { const roleArray = roleData as TrainingData[]; metrics.performanceByRole[role] = roleArray.reduce((sum, d) => sum + d.quality, 0) / roleArray.length; } // Identify improvement areas metrics.improvementAreas = this.identifyWeakAreas(data); return metrics; } private filterTrainingData(filter: any): TrainingData[] { return this.trainingData.filter(data => { if (filter.role && data.role !== filter.role) return false; if (filter.minQuality && data.quality < filter.minQuality) return false; if (filter.dateRange) { const dataDate = data.timestamp; if (dataDate < filter.dateRange.start || dataDate > filter.dateRange.end) { return false; } } return true; }); } private groupBy<T>(array: T[], key: string): Record<string, T[]> { return array.reduce((groups, item) => { const value = this.getNestedProperty(item, key); const group = groups[value] || []; group.push(item); groups[value] = group; return groups; }, {} as Record<string, T[]>); } private getNestedProperty(obj: any, path: string): any { return path.split('.').reduce((o, p) => o && o[p], obj); } private async analyzeAndImprove(trainingPoint: TrainingData): Promise<void> { // Real-time analysis and improvement if (trainingPoint.quality < 0.5) { const improvement = await this.generateImprovedResponse(trainingPoint); console.log(`Improvement suggestion for low-quality response:`, improvement); } } private async generateImprovedResponse(trainingPoint: TrainingData): Promise<string> { // Use AI to generate improved response return `Improved response for: ${trainingPoint.input}`; } private findCommonPatterns(inputs: string[]): string[] { // Analyze common input patterns const patterns = []; // Implementation would use NLP to find common themes return patterns; } private async suggestPromptImprovements(role: string, data: TrainingData[]): Promise<string[]> { // Analyze patterns and suggest prompt improvements return [`Improve ${role} responses for better clarity`]; } private calculateDataQuality(data: TrainingData[]): number { return data.reduce((sum, d) => sum + d.quality, 0) / data.length; } private extractUserFlows(logs: any[]): any[] { // Extract user interaction flows from logs return []; } private findMostCommonFlows(flows: any[]): any[] { // Find most common user flows return []; } private identifyDropOffPoints(flows: any[]): any[] { // Identify where users commonly drop off return []; } private findEfficientPaths(flows: any[]): any[] { // Find most efficient user paths return []; } private analyzeRoleBehavior(logs: any[]): any { // Analyze behavior patterns for specific role return {}; } private async generateWorkflowOptimizations(patterns: any): Promise<any[]> { // Generate optimization suggestions based on patterns return []; } private async calculateOverallPerformance(): Promise<number> { return this.trainingData.reduce((sum, d) => sum + d.quality, 0) / this.trainingData.length; } private async calculateRolePerformance(): Promise<Record<string, number>> { const roleGroups = this.groupBy(this.trainingData, 'role'); const performance: Record<string, number> = {}; for (const [role, data] of Object.entries(roleGroups)) { const roleArray = data as TrainingData[]; performance[role] = roleArray.reduce((sum, d) => sum + d.quality, 0) / roleArray.length; } return performance; } private async identifyImprovementAreas(): Promise<string[]> { const lowQualityData = this.trainingData.filter(d => d.quality < 0.6); const areas = this.groupBy(lowQualityData, 'role'); return Object.keys(areas); } private async generateTrainingRecommendations(): Promise<string[]> { return [ "Increase training data for low-performing roles", "Focus on improving response quality for common queries", "Implement feedback loops for continuous learning" ]; } private async analyzeInteractionPatterns(): Promise<any> { // Comprehensive pattern analysis return { temporalPatterns: "Peak usage during business hours", rolePatterns: "Workers prefer voice input, owners prefer analytics", contentPatterns: "Stock queries most common" }; } private identifyWeakAreas(data: TrainingData[]): string[] { const lowQualityByType = data .filter(d => d.quality < 0.6) .reduce((acc, d) => { acc[d.type] = (acc[d.type] || 0) + 1; return acc; }, {} as Record<string, number>); return Object.keys(lowQualityByType); } private async analyzeWorkflowGroup(workflow: string, data: TrainingData[]): Promise<any> { return { workflow, efficiency: this.calculateDataQuality(data), commonIssues: this.identifyWeakAreas(data), optimizations: [] }; } private async processTrainingData(data: TrainingData[]): Promise<void> { // Process training data for model improvement console.log(`Processing ${data.length} training samples`); } private async updateAIModels(session: TrainingSession): Promise<void> { // Update AI models with insights from training session console.log(`Updating AI models from session: ${session.name}`); } } export const aiTrainingService = new AITrainingService();

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/PSYGER02/mcpserver'

If you have feedback or need assistance with the MCP directory API, please join our Discord server