Skip to main content
Glama

Chicken Business Management MCP Server

by PSYGER02
embeddingService.ts1.4 kB
import { createClient } from '@supabase/supabase-js'; import AdvancedGeminiProxy from '../advanced-gemini-proxy'; const supabase = createClient( process.env.SUPABASE_URL!, process.env.SUPABASE_SERVICE_ROLE_KEY! ); class EmbeddingService { private geminiProxy: AdvancedGeminiProxy; constructor(geminiProxy: AdvancedGeminiProxy) { this.geminiProxy = geminiProxy; } async generateEmbeddings(texts: string[], options?: { batchSize?: number }): Promise<{ embeddings: number[][] }> { const result = await this.geminiProxy.generateEmbeddings(texts, { batchSize: options?.batchSize || 10, model: 'text-embedding-004' }); // Store in DB for (let i = 0; i < texts.length; i++) { await supabase.from('embeddings').insert({ text: texts[i], embedding: result.embeddings[i], created_at: new Date().toISOString() }); } return result; } async searchSimilar(text: string, limit: number = 5): Promise<any[]> { const embedding = await this.geminiProxy.generateEmbeddings([text]); // Use Supabase vector search (rpc or pgvector) const { data } = await supabase.rpc('match_embeddings', { query_embedding: embedding.embeddings[0], match_threshold: 0.78, match_count: limit }); return data || []; } } export const embeddingService = new EmbeddingService(new AdvancedGeminiProxy());

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/PSYGER02/mcpserver'

If you have feedback or need assistance with the MCP directory API, please join our Discord server