Skip to main content
Glama

Chicken Business Management MCP Server

by PSYGER02
chickenBusinessAI-enhanced.ts10.5 kB
/** * Enhanced ChickenBusinessAI Service * Advanced AI-powered parsing with Gemini 2.5 series models and memory integration * Patterns inspired by advanced MCP server implementations */ import { supabase } from '../src/supabaseConfig'; import { geminiAPIManager } from './geminiAPIManager'; import { chickenMemoryService } from './chickenMemoryService'; import { MultiLLMProxy } from './MultiLLMProxy'; interface ChickenBusinessPattern { business_type: 'purchase' | 'processing' | 'distribution' | 'cooking' | 'sales' | 'general'; confidence_score: number; learned_patterns: Record<string, any>; metadata?: { model?: string; library?: string; performance?: string; }; } export class EnhancedChickenBusinessAI { private proxy: MultiLLMProxy; constructor(proxy: MultiLLMProxy) { this.proxy = proxy; } /** * Parse note with enhanced AI and memory context */ async parseNote(noteText: string): Promise<{ success: boolean; data?: ChickenBusinessPattern; error?: string; suggestions?: string[]; }> { try { console.log('🧠 Starting enhanced chicken business parsing...'); // Get memory context for intelligent parsing const memoryContext = await this.getMemoryContext(noteText); // Parse with enhanced Gemini 2.5 models const pattern = await this.parseWithEnhancedGemini(noteText, memoryContext); // Store the pattern in memory for future context await this.storePatternInMemory(pattern, noteText); // Generate intelligent suggestions const suggestions = await this.generateIntelligentSuggestions(pattern); console.log('✅ Enhanced parsing completed:', { type: pattern.business_type, confidence: pattern.confidence_score, model: pattern.metadata?.model }); return { success: true, data: pattern, suggestions }; } catch (error) { console.error('❌ Enhanced parsing failed:', error); return { success: false, error: error instanceof Error ? error.message : 'Unknown error' }; } } /** * Get relevant memory context for intelligent parsing */ private async getMemoryContext(noteText: string): Promise<string> { try { // Extract key terms for memory search const keyTerms = this.extractKeyTerms(noteText); // Search memory for relevant patterns const memoryResults = await Promise.all( keyTerms.map(term => chickenMemoryService.searchPatterns(term)) ); // Build context from memory results const context = memoryResults .flat() .slice(0, 5) // Limit to top 5 results .map(result => `${result.business_type}: ${JSON.stringify(result.learned_patterns)}`) .join('\n'); return context; } catch (error) { console.warn('⚠️ Failed to get memory context:', error); return ''; } } /** * Parse using enhanced Gemini 2.5 models with memory context */ private async parseWithEnhancedGemini(noteText: string, memoryContext: string): Promise<ChickenBusinessPattern> { const enhancedPrompt = ` You are an advanced chicken business AI with access to historical patterns and context. HISTORICAL CONTEXT: ${memoryContext} CURRENT NOTE TO ANALYZE: "${noteText}" Using the historical context, intelligently parse this note for chicken business operations. Business Types: - purchase: Buying whole chickens from suppliers - processing/** * Enhanced ChickenBusinessAI Service * Advanced AI-powered parsing with Gemini 2.5 series models and memory integration * Patterns inspired by advanced MCP server implementations */ import { supabase } from '../src/supabaseConfig'; import { geminiAPIManager } from './geminiAPIManager'; import { chickenMemoryService } from './chickenMemoryService'; import { MultiLLMProxy } from './MultiLLMProxy'; interface ChickenBusinessPattern { business_type: 'purchase' | 'processing' | 'distribution' | 'cooking' | 'sales' | 'general'; confidence_score: number; learned_patterns: Record<string, any>; metadata?: { model?: string; library?: string; performance?: string; }; } export class EnhancedChickenBusinessAI { private proxy: MultiLLMProxy; constructor(proxy: MultiLLMProxy) { this.proxy = proxy; } /** * Parse note with enhanced AI and memory context */ async parseNote(noteText: string): Promise<{ success: boolean; data?: ChickenBusinessPattern; error?: string; suggestions?: string[]; }> { try { console.log('🧠 Starting enhanced chicken business parsing...'); // Get memory context for intelligent parsing const memoryContext = await this.getMemoryContext(noteText); // Parse with enhanced Gemini 2.5 models const pattern = await this.parseWithEnhancedGemini(noteText, memoryContext); // Store the pattern in memory for future context await this.storePatternInMemory(pattern, noteText); // Generate intelligent suggestions const suggestions = await this.generateIntelligentSuggestions(pattern); console.log('✅ Enhanced parsing completed:', { type: pattern.business_type, confidence: pattern.confidence_score, model: pattern.metadata?.model }); return { success: true, data: pattern, suggestions }; } catch (error) { console.error('❌ Enhanced parsing failed:', error); return { success: false, error: error instanceof Error ? error.message : 'Unknown error' }; } } /** * Get relevant memory context for intelligent parsing */ private async getMemoryContext(noteText: string): Promise<string> { try { // Extract key terms for memory search const keyTerms = this.extractKeyTerms(noteText); // Search memory for relevant patterns const memoryResults = await Promise.all( keyTerms.map(term => chickenMemoryService.searchPatterns(term)) ); // Build context from memory results const context = memoryResults .flat() .slice(0, 5) // Limit to top 5 results .map(result => `${result.business_type}: ${JSON.stringify(result.learned_patterns)}`) .join('\n'); return context; } catch (error) { console.warn('⚠️ Failed to get memory context:', error); return ''; } } /** * Parse using enhanced Gemini 2.5 models with memory context */ private async parseWithEnhancedGemini(noteText: string, memoryContext: string): Promise<ChickenBusinessPattern> { const enhancedPrompt = ` You are an advanced chicken business AI with access to historical patterns and context. HISTORICAL CONTEXT: ${memoryContext} CURRENT NOTE TO ANALYZE: "${noteText}" Using the historical context, intelligently parse this note for chicken business operations. Business Types: - purchase: Buying whole chickens from suppliers - processing private getWorkflowSuggestions(pattern: ChickenBusinessPattern): string[] { const suggestions: string[] = []; switch (pattern.business_type) { case 'purchase': suggestions.push('🔄 Next: Track processing yields and waste ratios'); break; case 'processing': suggestions.push('🚚 Next: Record distribution to branches'); break; case 'distribution': suggestions.push('🍳 Next: Track cooking operations at branches'); break; case 'cooking': suggestions.push('💰 Next: Record sales and leftover management'); break; case 'sales': suggestions.push('📊 Consider analyzing profit margins and customer patterns'); break; } return suggestions; } /** * Extract key terms for memory search */ private extractKeyTerms(text: string): string[] { const commonTerms = ['magnolia', 'branch', 'worker', 'bags', 'parts', 'necks', 'cook', 'sale']; const words = text.toLowerCase().split(/\s+/); return words.filter(word => word.length > 3 && (commonTerms.includes(word) || /^\d+/.test(word)) ); } /** * Get business insights using enhanced models */ async getBusinessInsights(timeframe: 'today' | 'week' | 'month' = 'week'): Promise<{ insights: string[]; recommendations: string[]; performance?: any; }> { try { console.log('🔍 Generating business insights...'); // Get recent patterns from memory const recentPatterns = await chickenMemoryService.getRecentPatterns(timeframe); // Analyze patterns with enhanced AI const analysis = await this.analyzeBusinessPatterns(recentPatterns); return { insights: analysis.insights, recommendations: analysis.recommendations, performance: analysis.performance }; } catch (error) { console.error('❌ Failed to generate business insights:', error); return { insights: ['Unable to generate insights at this time'], recommendations: ['Check system connectivity and try again'] }; } } /** * Analyze business patterns with AI */ private async analyzeBusinessPatterns(patterns: any[]): Promise<{ insights: string[]; recommendations: string[]; performance: any; }> { // This would use enhanced Gemini models to analyze patterns // For now, returning basic analysis structure const insights = [ `📊 Analyzed ${patterns.length} recent operations`, `🎯 Average confidence score: ${patterns.reduce((acc, p) => acc + (p.confidence_score || 0), 0) / patterns.length}` ]; const recommendations = [ '🔄 Continue tracking all workflow stages', '📈 Monitor supplier consistency and pricing' ]; const performance = { total_operations: patterns.length, avg_confidence: patterns.reduce((acc, p) => acc + (p.confidence_score || 0), 0) / patterns.length, operation_types: patterns.reduce((acc, p) => { acc[p.business_type] = (acc[p.business_type] || 0) + 1; return acc; }, {} as Record<string, number>) }; return { insights, recommendations, performance }; } } // Export enhanced singleton instance export const enhancedChickenBusinessAI = new EnhancedChickenBusinessAI();

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/PSYGER02/mcpserver'

If you have feedback or need assistance with the MCP directory API, please join our Discord server